运筹学与网络科学

网络科学是本世纪刚刚兴起的一个新的交叉学科。它以复杂网络为主要研究对象,通过对复杂网络特性的提取和刻画,探究其所反映的复杂系统的普遍规律。网络科学是将运筹学的思想和方法应用于生命科学的主要桥梁之一。网络科学在过去的十余年间飞速发展,在计算机、社会学、生物学等领域都产生了重大影响,已经成为研究复杂系统、解决复杂性问题的重要理论和方法。例如,大量基于复杂网络社团结构的分析方法已经成为系统生物学中研究生物功能的基本工具。运筹学的各个分支,特别是最优化方法和图论已经在网络科学中发挥了重要作用。


今后十年内网络科学预期将有重大的突破,并成为应用科学的主流性分支。运筹学同网络理论有着天然的联系:运筹学有可能给出网络的表达方式、理论刻画以及分析方法。未来十年网络科学和运筹学的交叉研究可能在以下两个方面有所突破。

(1)网络生成模型

随着各种实际网络数据的大量产生,人们对实际网络基本特征的认识必将深化,对普适性的网络和个性化的网络建立合适的网络模型的时机将日趋成熟。例如,生命科学中,各种生物网络迅速积累和扩张。在过去十余年间伴随着网络科学的发展,生物网络相关研究已经成为系统生物学研究最基本的部分。但是,网络数据的复杂性和实际网络的不确定性都使得刻画网络的产生机制成为重要且极具挑战性的问题。可以预见的是,随着网络数据的积累和发展,人们终将认识其产生机制。运筹学的最优化理论、图论与随机运筹模型和方法等,将会在模型的建立与分析起到无可替代的作用。

(2)网络演化特征的刻画

现实的网络是一个不断更新、变化着的复杂系统。揭示和刻画网络演化的特征对理解网络的功能和结构具有重要的意义。随着生物技术与计算机的高速发展,大规模时序数据的积累将成为可能,如何有效的分析和利用这些数据,运筹学、统计学应用数学分支将会为彻底的认识、解决这一问题起到无比重要的作用。

此外,网络科学目前尚处于实证研究为主的阶段。它要真正成为一门独立的科学分支,必须建立其基础理论、运算理论,以及从目前的实证地从实际世界中提炼网络模型,发展到应用网络理论去建立自然界的或技术性的系统,使其具有特定的性质。在这一过程中,运筹学可以成为一个主要的工具。在这一方面,运筹学的发展历史可以借鉴。在线性规划的算法背后,是强有力的对偶理论;在非线性规划算法的后面,是收敛性理论和凸分析理论;在图论和组合方面,是计算复杂性理论。由此构成运筹学这门学科。而网络理论势必在以后的十年中完成这一过程。

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: