运筹学发展概况 (五)

随机最优化

随机最优化问题是特指带有随机因素的最优化问题,需要利用概率统计、随机过程以及随机分析等工具。所谓的随机因素,包括环境的随机因素、控制变量不确定因素、准则值的不确定因素等等。例如,在考虑水库优化调度问题的时候,天然来水一般是三阶皮尔逊分布的随机变量。在考虑库存管理问题时,变动的需求常常考虑为外生的随机变量。这些都属于环境的不确定因素。在排队系统中服务速率确定后,真实的服务时间依然是随机变化的,这属于控制变量的不确定因素。使用药物最终能够达到的效果往往不是确定的,评判最优的值函数在很多问题中也具有不确定性等等。通常人们处理随机因素的方式有期望值方法,将随机的因素用它的期望值代替,将问题转化为确定性问题考虑。第二种方法是在概率意义下考虑优化问题。例如在置信区间范围内考虑优化问题,将问题转换为概率约束或者是机会约束的优化问题;又例如考虑极大化某些事件的概率问题,也称为相关机会约束问题。第二种方法相对于期望值方法的优点是考虑到各种风险的影响,缺点是使得问题的处理变得相对困难。

排队论

排队论模型被人们广泛用于半导体生产加工与设计、计算机通讯网络、交通运输等行业。随着科学技术的发展,描述上述类型的排队网络变得极为复杂,使得与传统的排队网络有很多本质的区别。当今人们对复杂的随机排队网络关心的问题有3 个:

(1)遍历性问题,即给定一个随机排队网络、若网络中每一服务台的服务强度严格小于1,那么描述系统的马氏过程是不是遍历?

(2)在便利条件下,当每一服务台服务强度趋向于1,描述系统的指标如队长、等待时间其扩散逼近是不是存在?

(3)在遍历的条件下如何找出最优的服务规则?第一个问题归结为针对排队系统、找出构造李雅普诺夫函数的一般有效方法,第二个问题的解决归结为具有可料性的动态补问题。
马氏决策的理论研究

随着人们对实际问题的深入理解,马氏决策理论的应用范畴越来越广泛。因此,提出的马氏决策理论问题越来越具有特殊性和广泛性。研究特殊结构的马氏决策理论越来越具有重要的意义。例如大规模对抗与合作系统的问题、金融监管的需求、一般监管理论的研究等等,都为马氏决策理论带来了新挑战。非标准准则的深入研究是应对这些需求的必要条件,如有超大状态空间问题的求解问题、带有纳什均衡的多阶段决策问题、带有适应性参数影响的非时齐问题等等。这些研究工作对于国民经济中的重大问题研究有着重要的帮助。

复杂系统可靠性理论

现代化技术和设备的飞速发展和更新,使得人们面对的系统越来越复杂,而诱发了许多人们无法理解的现象,例如:利用原来的系统可靠性理论得到的可靠性与实际系统人们感觉到的完全不同。如何发展相关的数学分析工具以解释这些问题就显得非常重要。在人们已经做出的工作中,出现一些有意义研究,例如:功能相依性分析、功能冗余性研究、概率理论的深入研究等等。因此,如何将系统可靠性理论的结论和方法上升到解决复杂系统可靠性问题是核心的难点。

软件可靠性理论

软件是随着计算机硬件的诞生产生的,其重要程度是不言而喻,现在已经成为人们生活中必不可缺的成分,特别是科技水平越高,就越离不开软件的支持。由于软件系统的高度复杂性(其复杂程度远远高于通常的复杂系统,事实上,软件系统往往不是一个有限的系统了)导致了人们通常在系统可靠性中使用的方法完全无效。人们有必要探索有效的相关理论,特别是数学工具,以有效地研究软件可靠性问题。事实上,将软件可靠性问题与软件测试过程结合是一种有效的方法。一方面,可以有效地指导软件的测试过程(目前,用于软件测试的费用已经占到整个软件开发费用的50%);一方面,可以正确地评估软件的可靠性。将测试过程与软件可靠性分析结合的过程中,人们发现必须发展诸如随机过程、排队理论、马氏决策理论以及相关的数学方法,以适用于分析软件的问题。

供应链的优化设计

随机环境下的复杂供应链系统的优化与设计问题是从管理科学中提出的数学问题。与传统的供应链模型相比,描述系统的随机性不再由简单的普阿松过程与独立同分布随机变量序列给出,而由相依的一些高斯过程来刻画。通常面临3 个基本数学问题:一是如何来找出求解人们所关心的系统数量指标的一般方法?二是找出这些求解方法之后,基于这些解、如何找出最优策略?三是供应链协调时,如何找出最优的协调策略即平衡点。这些问题的解决需要借助随机分析、随机最优控制和博弈论,且根据模型的自身特点,发展一套新的数学方法和理论。

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: